$Br_2-ZnBr_2-H_2O$ system at 298 K (Duhlev & Balarew, 1986), the corresponding chloride, $CaZnCl_4.5H_2O$, is the only double salt reported in the $CaCl_2-ZnCl_2-H_2O$ system at 298 K (Hudgins, 1964). We expect the chloride compound to be built of the same structural motifs, packed in a similar if not the same way. Another compound with the same formula type, MgZn- $Cl_4.5H_2O$, has been reported (Balarew & Spassov, 1980) but because of the large difference in size between Mg^{2+} and Ca^{2+} , the environment around Mg^{2+} is expected to be different from that of Ca^{2+} in the present structure.

We wish to thank the Natural Science and Engineering Research Council of Canada for an operating grant to one of us (IDB).

References

- BALAREW, CHR. & DUHLEV, R. (1984). J. Solid State Chem. 55, 1–6.
- BALAREW, CHR. & SPASSOV, D. (1980). Russ. J. Inorg. Chem. 25, 1551–1556.
- BROWN, I. D. & ALTERMATT, D. (1985). Acta Cryst. B41, 244-247.
- DUHLEV, R. & BALAREW, CHR. (1986). Rev. Chim. Miner. 23, 116-124.
- HALL, S. R. (1981). Acta Cryst. A37, 517-525.
- HUDGINS, C. M. (1964). J. Chem. Eng. Data. 9, 434-435.
- International Tables for X-ray Crystallography (1974). Vol. IV, Tables 2.2B and 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- LARSON, A. C. (1967). Acta Cryst. 23, 664–665.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1988). C44, 965-967

Structures of $Rb_2[InCl_5(H_2O)]$ and $Cs_2[InCl_5(H_2O)]$

By XAVIER SOLANS

Depto de Cristalografía, Universidad de Barcelona, Gran Via 585, 08007 Barcelona, Spain

AND MARY C. MORON AND FERNANDO PALACIO

Instituto de Ciencia de Materiales de Aragón, CSIC y Univ. de Zaragoza, 50009 Zaragoza, Spain

(Received 22 July 1987; accepted 1 February 1988)

Abstract. (I) Rubidium aquapentachloroindate, Rb₂-[InCl₅(H₂O)], $M_r = 481.04$, orthorhombic, Pnma, a $= 14.050 (3), b = 10.087 (2), c = 7.215 (2) \text{ Å}, D_r =$ 3.124 g cm^{-3} , Z = 4, $V = 1022.5 (7) \text{ Å}^3$, F(000) =872. λ (Mo $K\alpha$) = 0.71069 Å, $\mu(Mo K\alpha) =$ 135.01 cm⁻¹, T = 288 K. Final R = 0.021 for 764 reflections. (II) Caesium aquapentachloroindate, Cs2-[InCl₅(H₂O)], $M_r = 575.91$, orthorhombic, *Pnma*, a $= 14.410(3), b = 10.382(2), c = 7.416(1) \text{ Å}, D_r =$ 3.447 g cm^{-3} , Z = 4, $V = 1109.5 (3) \text{ Å}^{-3}$, F(000) = λ (Mo K α) = 0.71069 Å, 1016, μ (Mo K α) = 98.06 cm⁻¹, T = 288 K. Final R = 0.020 for 765 reflections. In both compounds the anions are distorted octahedra, with In, O and three Cl atoms on the mirror plane. Cl···O (-x, -y, 2-z) distances of 3.148 (9) (I) and 3.09 Å (II) indicate hydrogen bonding between O and Cl atoms of neighbouring octahedra. All other bond lengths are normal. Comparison of both structures with related $A_2[MX_5(H_2O)]$ structures is also made.

Introduction. The series of compounds $A_2[InCl_5-(H_2O)]$, where $A = NH_4$, K, Rb, Cs, are of interest

because they are the diamagnetic analogues of the intensively studied series of antiferromagnets A_2 [FeCl₅- (H_2O)] (Carlin & Palacio, 1985). In fact, all the compounds in both series whose structures are known are orthorhombic, although they are not all isomorphic. The Cs/Fe compound belongs to the space group Cmcm (O'Connor, Deaver & Sinn, 1979; Greedan, Hewitt, Faggiani & Brown, 1980) and is isomorphic to the analogous ruthenium(III) material (Hopkins, Zalkin, Templeton & Adamson, 1966). The remaining compounds belong to space group Pnma (Carlin, Bhatia & O'Connor, 1977) and therefore the K and NH₄ derivatives of the Fe and In compounds are isomorphic (Lindqvist, 1947; Bellanca, 1948; Klug, Kummer & Alexander, 1948; Wignacourt, Mairesse & Barbier, 1976; Figgis, Raston, Sharma & White, 1978).

We report here on the crystal structures of both the Cs and Rb derivatives of the In series. Our aim was to elucidate whether $Cs_2[InCl_5(H_2O)]$ would follow the tendency of its Fe and Ru analogues or would belong to the much wider family of isomorphic compounds with space group *Pnma*. In addition, since $Rb_2[FeCl_5(H_2O)]$ is very interesting from a magnetic point of view

0108-2701/88/060965-03\$03.00

© 1988 International Union of Crystallography

Table A_2 [InCl₅(H₂O)], A =Rb and Cs $B_{eq} = 8\pi/3\sum_i\sum_i U_{ii}a_i^*a_i^*a_i.a_i$

1. Final atomic coordinates $(\times 10^5)$ of Table 3. Unit-cell parameters of isomorphic compounds of the series $A_{2}[MX_{5}(H_{2}O)]$, with space group Pnma

x	y	Ζ	B_{eq} (Å ²)			
11455 (2)	25000	80901 (4)	0.64 (2)			
35547 (3)	-10 (3)	84459 (4)	1.96 (2)			
22249 (9)	25000	107884 (15)	1.97 (5)			
25254 (7)	25000	59682 (14)	1.40 (4)			
322 (8)	25000	54228 (17)	1.76 (5)			
10431 (7)	470 (7)	81926 (13)	1.84 (4)			
-1102 (22)	25000	100574 (47)	2.11 (15)			
11560 (2)	25000	69073 (4)	I·27 (2)			
35727 (2)	-183 (2)	83830 (3)	2.00 (2)			
2242 (1)	2500	10673 (2)	2.32 (5)			
2485 (1)	2500	5963 (2)	1.87 (5)			
53 (1)	2500	5517 (2)	2.12 (4)			
1023 (1)	-95 (1)	8289 (1)	2.02 (4)			
-68 (2)	2500	10091 (4)	2.91 (17)			
	$\begin{array}{c} x \\ 11455 (2) \\ 35547 (3) \\ 22249 (9) \\ 25254 (7) \\ 322 (8) \\ 10431 (7) \\ -1102 (22) \\ 11560 (2) \\ 35727 (2) \\ 2242 (1) \\ 2485 (1) \\ 53 (1) \\ 1023 (1) \\ -68 (2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Table 2. Selected bond lengths (Å) and angles (°) for $A_{2}[InCl_{s}(H_{2}O)], A = Rb and Cs$

Rb ₂ [InCl ₅ (H ₂ O)]		$Cs_2[InCl_5(H_2O)]$			
Cl(1)–In	2.468 (1)	Cl(1)–In	2.472 (1)		
Cl(2)—In	2.470(1)	Cl(2)—In	2.483(1)		
Cl(3)–In	2-480(1)	Cl(3)–In	2.484 (1)		
Cl(4)–In	2.480(1)	Cl(4)–In	2.508 (1)		
O–In	2.264 (3)	O—In	2.304 (4)		
Rb…In	4.2291 (5)	Cs…In	4.358 (1)		
Rb ⁱ ····In	4.2142 (5)	Cs ⁱ …In	4.360(1)		
Cl(1)····Rb	3.565(1)	C1(1)Cs	4.279 (1)		
Cl(2)····Rb	3-413(1)	$Cl(2)\cdots Cs$	3.128(1)		
Cl(4)····Rb	3.534(1)	$Cl(4)\cdots Cs$	3.815(1)		
Cl(1 ⁱⁱ)····Rb	3-351 (1)	Cl(1 ^{il})····Cs	2.976 (1)		
Cl(2 ⁱⁱⁱ)····Rb	3.460(1)	Cl(2 ⁱⁱⁱ)····Cs	4.244 (1)		
Cl(3 ⁱⁱⁱ)····Rb	3.512(1)	Cl(3 ⁱⁱⁱ)····Cs	4.210(1)		
Cl(3 ^{iv})····Rb	3-367 (1)	Cl(3 ^{iv})····Cs	3.877 (1)		
Cl(1 ^v)····Rb	3.565 (1)	Cl(1 ^v)····Cs	4.279 (1)		
Cl(2 ^v)···Rb	3.413 (1)	Cl(2 ^v)····Cs	3.128(1)		
Cl(3 ^{vl})····Rb	3.367 (1)	Cl(3 ^{vl})···Cs	3.877 (1)		
Cl(4 ^{vi})····Rb	3.691 (1)	Cl(4 ^{vi})···Cs	3.535 (1)		
Cl(1 ^{vil})…Rb	3.351(1)	Cl(1 ^{vii})····Cs	2.976(1)		
Cl(2 ^{vill})····Rb	3.460(1)	Cl(2 ^{viii})····Cs	4.244 (1)		
Cl(3 ^{viii})…Rb	3.511(1)	Cl(3 ^{viii})····Cs	4.210(1)		
Cl(4 ^{vil})…Rb	3.471 (1)	Cl(4 ^{vii})····Cs	2.748 (1)		
O…Cl(4)	3.249 (9)	0Cl(4)	3.39(1)		
$O(^{ix})\cdots Cl(4)$	3.148 (9)	$O(Ix) \cdots CI(4)$	3.09 (1)		
C(2) - In - C(1)	90.4 (1)	$C(2) = I_{II} = C(1)$	90.2(1)		
Cl(3)-In- $Cl(1)$	178.8(1)	Cl(3)-In- $Cl(1)$	179.5 (1)		
Cl(3)-In- $Cl(2)$	90.8 (1)	Cl(3) - In - Cl(2)	90.2(1)		
Cl(4)-In- $C(1)$	90.7 (1)	Cl(4) - In - Cl(1)	90·2 (I)		
Cl(4)-In- $Cl(2)$	93.7(1)	Cl(4)-In- $Cl(2)$	95.5(1)		
Cl(4) - In - Cl(3)	89.2 (1)	Cl(4)-In-Cl(3)	89·8 (I)		
O-In-Cl(1)	89.1 (1)	O-In-Cl(1)	89.2 (2)		
O-In-Cl(2)	179.5 (1)	O-In-Cl(2)	179.5 (2)		
O-In-Cl(3)	89·7 (1)	O-In-Cl(3)	90.3 (2)		
O-In-Cl(4)	86·3 (1)	O-In-Cl(4)	84.5 (2)		
$Cl(3^{vn})Rb Cl(4^{vl})Rb OCl(4) O(^{k})Cl(4) Cl(2)-In-Cl(1) Cl(3)-In-Cl(2) Cl(4)-In-Cl(2) Cl(4)-In-Cl(2) Cl(4)-In-Cl(3) O-In-Cl(1) O-In-Cl(2) O-In-Cl(3) O-In-Cl(4)$	3.511 (1) 3.471 (1) 3.249 (9) 3.148 (9) 90.4 (1) 178.8 (1) 90.8 (1) 90.7 (1) 93.7 (1) 89.2 (1) 89.1 (1) 179.5 (1) 89.7 (1) 89.7 (1) 80.3 (1)	$\begin{array}{l} Cl(3^{\text{vm}}) \cdots Cs \\ Cl(4^{\text{vm}}) \cdots Cs \\ 0 \cdots Cl(4) \\ O^{(h)} \cdots Cl(4) \\ Cl(2) - In - Cl(1) \\ Cl(3) - In - Cl(2) \\ Cl(3) - In - Cl(2) \\ Cl(4) - In - Cl(2) \\ Cl(4) - In - Cl(3) \\ 0 - In - Cl(1) \\ 0 - In - Cl(2) \\ 0 - In - Cl(2) \\ 0 - In - Cl(3) \\ 0 - In - Cl(4) \end{array}$	4.210 (1) 2.748 (1) 3.39 (1) 3.09 (1) 90.2 (1) 179.5 (1) 90.2 (1) 90.2 (1) 90.2 (1) 90.2 (1) 90.2 (1) 90.2 (1) 179.5 (2) 90.3 (2) 84.5 (2)		

Symmetry code: (i) $\frac{1}{2}-x$, $y-\frac{1}{2}$, $z+\frac{1}{2}$; (ii) $\frac{1}{2}-x$, $\frac{1}{2}+y$, $z+\frac{1}{2}$; (iii) $\frac{1}{2}-x$, $\frac{1}{2}+y$, $z-\frac{1}{2}$; (iv) $x-\frac{1}{2}$, $\frac{1}{2}-y$, $\frac{3}{2}-z$; (v) x, $\frac{1}{2}-y$, z; (vi) $x-\frac{1}{2}$, y, $\frac{3}{2}-z$; (vii) $\frac{1}{2}-x$, -y, $z+\frac{1}{2}$; (viii) $\frac{1}{2}-x$, -y, $z-\frac{1}{2}$; (ix) -x, -y, 2-z.

(Puértolas, Navarro, Palacio, Bartolomé, González & Carlin, 1985), it is relevant to characterize crystallographically a diamagnetic isomorph.

Experimental. Prismatic crystals $(0.1 \times 0.1 \times 0.2 \text{ mm})$ (I) and $(0.1 \times 0.1 \times 0.15 \text{ mm})$ (II) were selected and

							Refer-
A	М	X	a(Å)	b(Å)	c(Å)	Ζ	ence
NH₄	In	Cl	14.10	10.17	7.16	4	(a)
КĊ	In	Cl	13.905	9.952	7.185	4	(b)
Rb	In	Cl	14.050	10.087	7.215	4	This work
Cs	In	Cl	14-410	10.382	7.416	4	This work
H3O	Fe	Cl	13-720	9.926	7.038	4	(c)
NH₄	Fe	Cl	13.706	9.924	7.024	4	(d)
K	Fe	Cl	13.75	9.92	6-93	4	(e)
Rb	Fe	Cl	13.825	9.918	7.100	4	()
Rb	Fe	Br	14.2	10.4	7.4	4	(g)
Cs	Fe	Br	14.7	10.7	7.6	4	(g)
NH₄	Мо	Cl	13.860	9.944	7.133	4	(h)
NH₄	Мо	Br	14.423	10.373	7.516	4	(<i>h</i>)
ĸ	Ru	Cl	13.53	9.55	6.96	4	<i>(i)</i>

References: (a) Klug, Kummer & Alexander (1948); (b) Wignacourt, Mairesse & Barbier (1976); (c) Søtofte & Nielsen (1981); (d) Figgis, Raston, Sharma & White (1978); (e) Bellanca (1948); (f) O'Connor, Deaver & Sinn (1979); (g) Carlin, Bhatia & O'Connor (1977); (h) Cavell & Quail (1983); (i) Khodashova (1960).

Fig. 1. Unit cell of Rb₂[InCl₅(H₂O)].

mounted on a Philips PW 1100 four-circle diffractometer. Unit-cell parameters were determined from 25 reflections (4° $\leq \theta \leq 12^{\circ}$) and refined by least squares. Intensities were collected with graphite-monochromatized Mo $K\alpha$ radiation, using the ω -scan technique, with scan width 0.8° and scan speed 0.03° s⁻¹. 1032 reflections for (I) and 1034 for (II) were measured in the range $2^{\circ} \le \theta \le 25^{\circ}$, of which 764 and 765, respectively, were taken as observed with $I \ge 2.5\sigma(I)$. Three reflections were measured every 2 h as orientation and intensity controls, no significant intensity decay was observed. Lorentz-polarization and absorption corrections were made [transmission factors 0.84-0.73 (I) and 0.93-0.86 (II)]. Both structures were solved by direct methods, using the MULTAN84 system of computer programs (Main, Fiske, Hull, Lessinger,

Germain, Declercq & Woolfson, 1984) and refined by full-matrix least squares, using the SHELX76 program (Sheldrick, 1976). The function minimized was $\sum w ||F_o| - |F_c||^2$, where $w = \{\sigma^2(F_o) + \kappa(F_o)^2\}^{-1}$, κ = 0.045 for (I) and 0.0 for (II). f, f' and f'' were taken from International Tables for X-ray Crystallography (1974). H atoms were not located.

The final R values were 0.021 (wR = 0.020) in (I) and 0.020 (wR = 0.020) in (II) for all observed reflections. Max. and min. peaks in final difference maps were ± 0.3 e Å⁻³ at 1.81 Å from Rb for (I) and +0.3, $-0.4 \text{ e} \text{ Å}^{-3}$ at 1.69 Å from Cs for (II). Max. shift/e.s.d. = -0.07, U_{22} of O in (I), and -0.08, U_{33} of O in (II).

Discussion. The crystals are isomorphous and contain discrete [InCl₅(H₂O)]²⁻ distorted octahedra, the In, O and three Cl atoms being positioned on the mirror plane (Fig. 1). Final positional coordinates for A₂[InCl_s- (H_2O)], A = Cs and Rb, are given in Table 1.* Table 2 contains a selection of bond lengths and angles. From the magnitude of the O…Cl distance, it can be stated that in each octahedral unit the O atom is within hydrogen-bonding distance of Cl atoms of neighbouring $[InCl_{5}(H_{2}O)]^{2-}$ octahedra, a fact which is common to the rest of the members in the isomorphic series. Available crystallographic results of isomorphic related compounds are summarized in Table 3.

We thank the American–Spain Joint Committee for Grant No. CCB-8504/001.

References

- BELLANCA, A. (1948). Period. Mineral. 17, 59-72.
- CARLIN, R. L., BHATIA, S. N. & O'CONNOR, C. J. (1977). J. Am. Chem. Soc. 99, 7728-7729.
- CARLIN, R. L. & PALACIO, F. (1985). Coord. Chem. Rev. 65, 141-165.
- CAVELL, R. G. & QUAIL, J. W. (1983). Inorg. Chem. 22, 2597-2599.
- FIGGIS, B. N., RASTON, C. L., SHARMA, R. P. & WHITE, A. H. (1978). Aust. J. Chem. 31, 2717-2720.
- GREEDAN, J. E., HEWITT, D. C., FAGGIANI, R. & BROWN, I. D. (1980). Acta Cryst. B36, 1927-1929.
- HOPKINS, T. E., ZALKIN, A., TEMPLETON, D. H. & ADAMSON, M. G. (1966). Inorg. Chem. 5, 1431-1433.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KHODASHOVA, T. S. (1960). Zh. Strukt. Khim. 1, 333-336. (Engl. transl. J. Struct. Chem. 1, 308-311.)
- KLUG, H. P., KUMMER, D. & ALEXANDER, L. (1948). J. Am. Chem. Soc. 70, 3064-3068.
- LINDQVIST, I. (1947). Ark. Kemi Mineral. Geol. 24A, No. 1.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1984). MULTAN84. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- O'CONNOR, C. J., DEAVER, B. S. JR & SINN, E. (1979). J. Chem. Phys. 70, 5161-5167.
- PUÉRTOLAS, J. A., NAVARRO, R., PALACIO, F., BARTOLOMÉ, J., GONZÁLEZ, D. & CARLIN, R. L. (1985). Phys. Rev. B, 31, 516-526.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SØTOFTE, I. & NIELSEN, K. (1981). Acta Chem. Scand. Ser. A, 35, 821-822
- WIGNACOURT, J. P., MAIRESSE, G. & BARBIER, P. (1976). Cryst. Struct. Commun. 5, 293-296.

Acta Cryst. (1988). C44, 967-970

trans-Hexakis(pyrazole)manganese(II) Bisperchlorate (1) and trans-Dichlorotetrakis(pyrazole)manganese(II) (2)

By PAAVO O. LUMME,* EVA LINDELL AND ILPO MUTIKAINEN

Department of Inorganic Chemistry, University of Helsinki, Vuorik. 20, SF-00100 Helsinki, Finland

(Received 6 July 1987; accepted 25 January 1988)

Abstract. (1): $[Mn(C_3H_4N_2)_6](ClO_4)_2$, $M_r = 662.31$, que reflections with $I > 3\sigma(I)$. (2): $[MnCl_2(C_3H_4N_2)_4]_4$ trigonal, $P\overline{3}$, a = 10.129 (4), c = 8.039 (5) Å, V =714.3 (6) Å³, Z = 1, $D_m = 1.55$ (2), $D_{\rm r} =$ 1.54 Mg m⁻³, λ (Mo K α) = 0.71069 Å, μ = 0.73 mm⁻¹, F(000) = 339, T = 295 (1) K, R = 0.050 for 577 uni-

 $M_r = 398.16$, monoclinic, C2/c, a = 13.695(3), b =9.426 (2), c = 15.239 (2) Å, $\beta = 118.03$ (1)°, V =1736·4 (5) ų, $D_m = 1.57$ (1), Z = 4, $D_r =$ 1.52 Mg m^{-3} , $\lambda(\text{Mo } K\alpha) = 0.71069 \text{ Å}$, $\mu = 1.11 \text{ mm}^{-1}$, F(000) = 812, T = 295 (1) K, R = 0.032 for 1633 unique reflections with $I > 3\sigma(I)$. The coordination

© 1988 International Union of Crystallography

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44741 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

^{*} To whom all correspondence should be addressed.